You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
android-notes/blogs/Algorithm/八大排序.md

124 lines
3.4 KiB

---
八大排序
---
#### 前言
八大排序:
1. 冒泡排序
2. 插入排序
3. 选择排序
4. 快速排序
5. 堆排序
#### 冒泡排序
```java
private static void sort(int[] data) {
//排序
for (int i = 0; i < data.length - 1; i++) {
boolean isSorted = true;
for (int j = 0; j < data.length-1-i; j++) {
if (data[j+1] < data[j]) {
int temp = data[j+1];
data[j+1] = data[j];
data[j] = temp;
isSorted = false;
}
}
if (isSorted) break;
}
//输出
System.out.println(Arrays.toString(data));
}
```
#### 插入排序
```java
private static void sort(int[] data) {
//排序
for (int i = 1; i < data.length; i++) {
for (int j = i; (j > 0) && (data[j - 1] > data[j]); j--) {
int temp = data[j];
data[j] = data[j - 1];
data[j - 1] = temp;
}
}
//输出
System.out.println(Arrays.toString(data));
}
```
#### 选择排序
```java
private static void sort(int[] data) {
//排序
for (int i = 0; i < data.length - 1; i++) {
for (int j = i + 1; j < data.length; j++) {
if (data[i] > data[j]) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
}
}
//输出
System.out.println(Arrays.toString(data));
}
```
#### 快速排序
```java
public class QuickSort {
public static void main(String[] args) {
int[] data = new int[]{1, 4, 0, 4, 7, 2, 9, 8};
//排序
sort(data, 0, data.length - 1);
//输出
System.out.println(Arrays.toString(data));
}
private static void sort(int[] data, int left, int right) {
//左下标一定小于又下标,否则就越界了
if (left < right) {
//对数组进行分割,取出下次分割的基准标号
int base = division(data, left, right);
//对基准标号左侧的一组数组进行递归的切割,以至于将这些数值完整的排序
sort(data, left, base - 1);
//对基准标号右侧的一组数值进行递归的切割,以至于将这些数值
sort(data, base + 1, right);
}
}
private static int division(int[] list, int left, int right) {
//以左边的数为基本值
int base = list[left];
while (left < right) {
//从序列右端开始,往左遍历,直到找到小于 base 的值
while (left < right && list[right] >= base) {
right--;
}
//找到比 base 小的元素,将这个元素放在最左边的位置
list[left] = list[right];
//从序列左端开始,往右遍历,直到找到大于 base 的值
while (left < right && list[left] <= base) {
left++;
}
//找到比 base 大的元素,将这个元素放在最右边的位置
list[right] = list[left];
}
//最后将base放到left位置,此时,left位置的左侧数值都应该比left小;
//而left位置的右侧数值都应该比left大
list[left] = base;
return left;
}
}
```
#### 堆排序