Update JVM 相关口水话.md

master
Omooo 4 years ago
parent c3a1f042f8
commit 15bda68149
  1. 21
      blogs/Java/口水话/JVM 相关口水话.md

@ -186,3 +186,24 @@ JVM 也提供了内联缓存来加快动态绑定,它能够缓存虚方法调
我对反射的好奇是来源于,经常会听说反射影响性能,那么性能开销在哪以及如何优化? 我对反射的好奇是来源于,经常会听说反射影响性能,那么性能开销在哪以及如何优化?
在此之前,我先讲讲 JVM 是如何实现反射的。
我们可以直接 new Exception 来查看方法调用的栈轨迹,在调用 Method.invoke() 时,是去调用 DelegatingMethodAccessorImpl 的 invoke,它的实际调用的是 NativeMethodAccessorImpl 的 invoke 方法。前者称为委派实现,后者称为本地实现。既然委派实现的具体实现是一个本地实现,那么为啥还需要委派实现这个中间层呢?其实,Java 反射调用机制还设立了另一种动态生成字节码的实现,成为动态实现,直接使用 invoke 指令来调用目标方法。之所以采用委派实现,是在本地实现和动态实现直接做切换。依据注释信息,动态实现比本地实现相比,其运行效率要快上 20 倍。这是因为动态实现无需经过 Java 到 C++ 再到 Java 的切换,但由于生产字节码比较耗时,仅调用一次的话,反而是本地实现要快上三四倍。考虑到很多反射调用仅会执行一次,JVM 设置了阈值 15,在 15 之下使用本地实现,高于 15 时便开始动态生成字节码采用动态实现。这也被称为 Inflation 机制。
在反手说一下反射的性能开销在哪呢?平时我们会调用 Class.forName、Class.getMethod、以及 Method.invoke 这三个操作。其中,Class.forName 会调用本地方法,Class.getMethod 则会遍历该类的公有方法,如果匹配到,它还将遍历父类的公有方法,可想而知,这两个操作都非常耗时。下面就是 Method.invoke 调用本身的开销了,首先是 invoke 方法的参数是一个可变长参数,也就是构建一个 Object 数组存参数,这也同时带来了基本数据类型的装箱操作,在 invoke 内部会进行运行时权限检查,这也是一个损耗点。普通方法调用可能有一系列优化手段,比如方法内联、逃逸分析,而这又是反射调用所不能做的,性能差距再一次被放大。
优化反射调用,可以尽量避免反射调用虚方法、关闭运行时权限检查、可能需要增大基本数据类型对应的包装类缓存、如果调用次数可知可以关闭 Inflation 机制,以及增加内联缓存记录的类型数目。
#### JVM 是如何实现泛型的?
#### JVM 是如何实现异常的?
在 Java 中,所有的异常都是 Throwable 类或其子类,它有两大子类 Error 和 Exception。 当程序触发 Error 时,它的执行状态已经无法恢复,需要终止线程或者终止虚拟机,常见的比如内存溢出、对栈溢出等;Exception 又分为两类,一类是受检异常,比如 IOException,一类是运行时异常 RuntimeException,比如空指针、数组越界等。
接下来我会从三个方面阐述这个问题。
首先是,异常实例的构造十分昂贵。这是由于在构造异常实例时,JVM 需要生成该异常的栈轨迹,该操逐一访问当前线程的 Java 栈桢,并且记录下各种调试信息,包括栈桢所指向方法的名字、方法所在的类名以及方法在原代码中的位置等信息。
其次是,JVM 捕获异常需要异常表。每个方法都有一个异常表,异常表中的每一个条目都代表一个异常处理器,并且由 from、to、target 指针及其异常类型所构成。form-to 其实就是 try 块,而 target 就是 catch 的起始位置。当程序触发异常时,JVM 会坚持触发异常的字节码的索引值落到哪个异常表的 from-to 范围内,然后再判断异常类型是否匹配,匹配就开始执行 target 处字节码处理该异常。
最后是 finally代码块的编译。我们知道 finally 代码块一定会运行的(除非虚拟机退出了)。那么它是如何实现的呢?其实是一个比较笨的办法,当前 JVM 的做法是,复制 finally 代码块的内容,分别放在所有可能的执行路径的出口中。
Loading…
Cancel
Save